Representatlon for Graphs W|th
Applications to Molecules

Shengchao Liu, Mehmet Furkan Demirel, Yingyu Liang
o University of Wisconsin-Madison, Madis‘%‘n
(A
W) A

Machine Learning Progress

« Significant progress in Machine Learning

-

Machine translation

— .
7.
-

-

Game Playing Medical Imaging

ML for Molecules?

» Significant progress in Machine Learning

ALL SYSTEMS GO

et AFLLUARD WHEX GENES
TRANSPARENCY GOT “SELFINH m

Game Playing Medical Imaging

ML for Molecules?

» Molecule property prediction

7\

Machine

Learning
Model

Toxic

Not Toxic

Challenge: Representations

* Input to traditional ML models: vectors

* How to represent molecules as vectors?
 Fingerprints: Morgan fingerprints, etc
« Graph kernels: Weisfeiler-Lehman kernel, etc
» Graph Neural Networks (GNN): Graph CNN, Weave, etc

 Fingerprints/kernels: unsupervised, fast to compute
* GNN: supervised end-to-end, more expensive; powerful

Our method: N-gram Graphs

» Unsupervised
 Relatively fast to compute

 Strong prediction performance
« Overall better than traditional fingerprint/kernel and popular GNNs

* Inspired by N-gram approach in Natural Language Processing

N-gram Approach in NLP

* n-gram Is a consecutive sequence of n words in a sentence

« Example: “this molecule looks beautiful”

e |Its 2-grams: “this molecule”, “molecule looks”, “looks beautiful”

N-gram Approach in NLP

* n-gram Is a consecutive sequence of n words in a sentence

« Example: “this molecule looks beautiful”
e |Its 2-grams: “this molecule”, “molecule looks”, “looks beautiful”

* N-gram count vector ¢, Is a numeric representation vector

 coordinates correspond to all n-grams

« coordinate value is the number of times the corresponding n-gram
shows up in the sentence

« Example: ¢4 is just the histogram of the words in the sentence

Dimension Reduction by Embeddings @

* N-gram vector c(,,y has high dimensions: |V/|" for vocabulary V
» Dimension reduction by word embeddings: f1y = Wy

Dimension Reduction by Embeddings

* N-gram vector c(,,y has high dimensions: |V/|" for vocabulary V
» Dimension reduction by word embeddings: f1y = Wy

fa

S

..”..
e

i-th column is the embedding vector for i-th word in the vocabulary

* fa) Is Just the sum of the word vectors in the sentence!

R
~
=
~—

o

Dimension Reduction by Embeddings

* N-gram vector c(,,y has high dimensions: |V/|" for vocabulary V
» Dimension reduction by word embeddings: f1y = Wy

For general n:
« Embedding of an n-gram: entrywise product of its word vectors

. f(n): sum of embeddings of the n-grams in the sentence

o

N-gram Graphs

« Sentence: linear graph on words
» Molecule: graph on atoms with attributes

Analogy:
« Atoms with different attributes: different words

« Walks of length n: n-grams

N-gram Graphs

« Sentence: linear graph on words
» Molecule: graph on atoms with attributes

Analogy:
« Atoms with different attributes: different words

« Walks of length n: n-grams

A molecular graph
Its 2-grams

N-gram Graph Algorithm

« Sentence: linear graph on words
» Molecule: graph on atoms with attributes

Given the embeddings for the atoms (vertex vectors)

« Enumerate all n-grams (walks of length n)

« Embedding of an n-gram: entrywise product of its vertex vectors
* f- sSum of embeddings of the n-grams

» Final N-gram Graph embedding f;: concatenation of f 4y, ..., fir

N-gram Graph Algorithm

« Sentence: linear graph on words
» Molecule: graph on atoms with attributes

Given the embeddings for the atoms (vertex vectors)

« Enumerate all n-grams (walks of length n)

« Embedding of an n-gram: entrywise product of its vertex vectors
* f- sSum of embeddings of the n-grams

» Final N-gram Graph embedding f;: concatenation of f 4y, ..., fir

 Vertex vectors: trained by an algorithm similar to node2vec

N-gram Graphs as Simple GNNs

« Efficient dynamic programming version of the algorithm

 Given vectors f; for vertices i, and the graph adjacent matrix A

J'_r’ = [J’l-...._frri-]

tnr L’li’:h n € [2,T] do
I () — (A-f (m 1;:) oy

Jin) = Fm)1
end for

» Equivalent to a simple GNN without parameters!

Experimental Results

* 60 tasks on 10 datasets from [1]

* Methods
» Weisfeiler-Lehman kernel + SVM
» Morgan fingerprints + Random Forest (RF) or XGBoost (XGB)

* GNN: Graph CNN (GCNN), Weave Neural Network (Weave), Graph
Isomorphism Network (GIN)

* N-gram Graphs + Random Forest (RF) or XGBoost (XGB)
* Vertex embedding dimension » = 100, and T = 6

[1] Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine
learning." Chemical science 9.2 (2018): 513-530.

Experimental Results

* N-gram+XGB: top-1 for 21 among 60 tasks, and top-3 for 48
e Overall better than the other methods

Table 2:

Performance overview: top-1 and top-3 tasks when applying each method on each dataset,

marked by (# of tasks with top-1 performance, # of tasks with top-3 performance). For method has
no top-1 and top-3 performance on all the tasks in the corresponding dataset, it is left blank.

Dataset Type #Task | Eval Metric | WL M‘;;ﬁ‘“‘ Mﬁrﬁ‘;“ GCNN | Weave | GIN N'f;lr;“" N;{;;;'"
delaney Regression I RMSE I, 1 0, | 0,1
malaria Regression I RMSE I, | 0, | 0,1
cep Regression I RMSE I, | 0, | 0,1
gm7 Regression I MAE 0,1 0, | I, 1
gm8 Regression 12 MAE .4 0,1 7,12 2,6 0,2 2, 11
qm9 Regression 12 MAE 0, 1 4,7 I, 8 0,8 7,12
tox21 Classification 12 ROC-AUC 0,2 0,7 0,2 0,1 3,12 9,12
clintox Classification 2 ROC-AUC 0,1 1,2 0,1 1,2
muv Classilication 17 PR-AUC 4,12 5,11 5,11 0,7 2,4 I, 6
hiv Classification I ROC-AUC 1,1 0, | 0,1
Overall Classification 60 4,15 9,25 5,13 12,23 4,18 0,7 5. 31 21,48

Runtime @

 Relatively fast

Table 4: Representation construction time in seconds. One task from each dataset as an example.
Average over 5 folds, and including both the training set and test set.

Task Dataset \:HL Murg,un EES GFNN WHWE Vb‘f;i" (—Er‘:"l[l}]h
CPU CPU GPU GPU GPU GPU
delaney delaney 2.46 (.25 44.29 53.17 49.63 2.90
malana malaria 128.81 5.28 435.73 560).96 1152.80 19.58
cep cep 1113.35 17.69 721.30 880.24 2695.57 37.40
gqm7 gm7 6().24 ().UR 118.13 79.70 173.50 10.60
E1-CC2 gmy 584.98 3.60 437.25 27345 966.49 3343
mu gmY — 19.58 2984.59 1570.70) 8279.03 169.72
NR-AR tox21 70.35 2.03 161.62 152.50 525.24 10.81
CT-TOX clintox 4.92 (0.63 77.89 101.26 191.93 3.83
MUV-466 muv 276.42 6.31 S508.36 472.97 1221.25 25.50
hiv hiv 2284.74 17.16 1412.11 2287.12 3975.76 139.85

Theoretical Analysis

* Recall f(l) — WC(l)
* I/ is the vertex embedding matrix
* C(1) Is the count vector

* With sparse c(;y and random W, ¢,y can be recovered from f,
» Well-known in compressed sensing

Theoretical Analysis

* Recall f(l) — WC(l)
* I/ is the vertex embedding matrix
* C(1) Is the count vector

* With sparse c(;y and random W, ¢,y can be recovered from f,
» Well-known in compressed sensing

* In general, f;;) = T(y)cen), for some linear mapping T,
depending on W

* With sparse c(,,y and random W, ¢,y can be recovered from f,

Theoretical Analysis

* Recall f(l) — WC(l)
* I/ is the vertex embedding matrix
* C(1) Is the count vector

* With sparse c(;y and random W, ¢,y can be recovered from f,
» Well-known in compressed sensing

* In general, f;;) = T(y)cen), for some linear mapping T,
depending on W

* With sparse c(,,y and random W, ¢,y can be recovered from f,

* SO f,,) preserves the information in ¢,

* Furthermore, can prove: regularized linear classifier on f,, is
competitive to the best linear classifier on ¢,

’3;*3__,»-

e

‘__,.,-;:3..\'&

S
%‘

——

SR
cﬁ. "—r

