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Machine Learning Progress

• Significant progress in Machine Learning

Computer vision Machine translation

Game Playing Medical Imaging



ML for Molecules?



ML for Molecules?

• Molecule property prediction 
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Challenge: Representations

• Input to traditional ML models: vectors 

• How to represent molecules as vectors? 
• Fingerprints: Morgan fingerprints, etc

• Graph kernels: Weisfeiler-Lehman kernel, etc

• Graph Neural Networks (GNN): Graph CNN, Weave, etc

• Fingerprints/kernels: unsupervised, fast to compute

• GNN: supervised end-to-end, more expensive; powerful



Our method: N-gram Graphs

• Unsupervised

• Relatively fast to compute

• Strong prediction performance
• Overall better than traditional fingerprint/kernel and popular GNNs

• Inspired by N-gram approach in Natural Language Processing



N-gram Approach in NLP

• 𝑛-gram is a consecutive sequence of 𝑛 words in a sentence

• Example: “this molecule looks beautiful”

• Its 2-grams: “this molecule”, “molecule looks”, “looks beautiful”



N-gram Approach in NLP

• 𝑛-gram is a consecutive sequence of 𝑛 words in a sentence

• Example: “this molecule looks beautiful”

• Its 2-grams: “this molecule”, “molecule looks”, “looks beautiful”

• N-gram count vector 𝑐(𝑛) is a numeric representation vector 

• coordinates correspond to all 𝑛-grams

• coordinate value is the number of times the corresponding 𝑛-gram 
shows up in the sentence

• Example: 𝑐(1) is just the histogram of the words in the sentence



Dimension Reduction by Embeddings

• N-gram vector 𝑐(𝑛) has high dimensions: 𝑉 𝑛 for vocabulary 𝑉

• Dimension reduction by word embeddings: 𝑓(1) = 𝑊𝑐(1)



Dimension Reduction by Embeddings

• N-gram vector 𝑐(𝑛) has high dimensions: 𝑉 𝑛 for vocabulary 𝑉

• Dimension reduction by word embeddings: 𝑓(1) = 𝑊𝑐(1)

• =

• 𝑓(1) is just the sum of the word vectors in the sentence!

𝑊 𝑐(1)𝑓(1)

𝑖-th column is the embedding vector for 𝑖-th word in the vocabulary



Dimension Reduction by Embeddings

• N-gram vector 𝑐(𝑛) has high dimensions: 𝑉 𝑛 for vocabulary 𝑉

• Dimension reduction by word embeddings: 𝑓(1) = 𝑊𝑐(1)

For general 𝑛: 

• Embedding of an 𝑛-gram: entrywise product of its word vectors

• 𝑓(𝑛): sum of embeddings of the 𝑛-grams in the sentence



N-gram Graphs

• Sentence: linear graph on words

• Molecule: graph on atoms with attributes

Analogy:

• Atoms with different attributes: different words

• Walks of length 𝑛: 𝑛-grams



N-gram Graphs

• Sentence: linear graph on words

• Molecule: graph on atoms with attributes

Analogy:

• Atoms with different attributes: different words

• Walks of length 𝑛: 𝑛-grams

A molecular graph
Its 2-grams



N-gram Graph Algorithm

• Sentence: linear graph on words

• Molecule: graph on atoms with attributes

Given the embeddings for the atoms (vertex vectors)

• Enumerate all 𝑛-grams (walks of length 𝑛)

• Embedding of an 𝑛-gram: entrywise product of its vertex vectors

• 𝑓(𝑛): sum of embeddings of the 𝑛-grams

• Final N-gram Graph embedding 𝑓𝐺: concatenation of 𝑓(1), … , 𝑓(𝑇)



N-gram Graph Algorithm

• Sentence: linear graph on words

• Molecule: graph on atoms with attributes

Given the embeddings for the atoms (vertex vectors)

• Enumerate all 𝑛-grams (walks of length 𝑛)

• Embedding of an 𝑛-gram: entrywise product of its vertex vectors

• 𝑓(𝑛): sum of embeddings of the 𝑛-grams

• Final N-gram Graph embedding 𝑓𝐺: concatenation of 𝑓(1), … , 𝑓(𝑇)

• Vertex vectors: trained by an algorithm similar to node2vec



N-gram Graphs as Simple GNNs

• Efficient dynamic programming version of the algorithm

• Given vectors 𝑓𝑖 for vertices 𝑖, and the graph adjacent matrix A

• Equivalent to a simple GNN without parameters!



Experimental Results

• 60 tasks on 10 datasets from [1]

• Methods
• Weisfeiler-Lehman kernel + SVM

• Morgan fingerprints + Random Forest (RF) or XGBoost (XGB)

• GNN: Graph CNN (GCNN), Weave Neural Network (Weave), Graph 
Isomorphism Network (GIN) 

• N-gram Graphs + Random Forest (RF) or XGBoost (XGB)

• Vertex embedding dimension 𝑟 = 100, and 𝑇 = 6

[1] Wu, Zhenqin, et al. "MoleculeNet: a benchmark for molecular machine 

learning." Chemical science 9.2 (2018): 513-530.



Experimental Results

• N-gram+XGB: top-1 for 21 among 60 tasks, and top-3 for 48

• Overall better than the other methods



Runtime

• Relatively fast



Theoretical Analysis

• Recall 𝑓(1) = 𝑊𝑐(1)
• 𝑊 is the vertex embedding matrix

• 𝑐(1) is the count vector

• With sparse 𝑐(1) and random 𝑊, 𝑐(1) can be recovered from 𝑓(1)
• Well-known in compressed sensing 
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Theoretical Analysis

• Recall 𝑓(1) = 𝑊𝑐(1)
• 𝑊 is the vertex embedding matrix

• 𝑐(1) is the count vector

• With sparse 𝑐(1) and random 𝑊, 𝑐(1) can be recovered from 𝑓(1)
• Well-known in compressed sensing 

• In general, 𝑓(𝑛) = 𝑇(𝑛)𝑐(𝑛), for some linear mapping 𝑇(𝑛)
depending on 𝑊

• With sparse 𝑐(𝑛) and random 𝑊, 𝑐(𝑛) can be recovered from 𝑓(𝑛)

• So 𝑓(𝑛) preserves the information in 𝑐(𝑛)

• Furthermore, can prove: regularized linear classifier on 𝑓(𝑛) is 

competitive to the best linear classifier on 𝑐(𝑛)
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