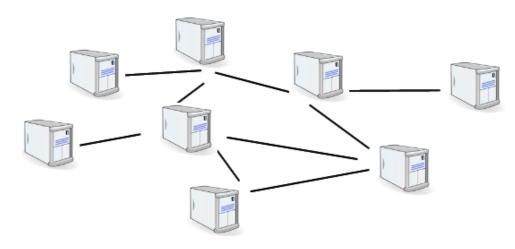
# Distributed k-Means and k-Median Clustering on General Topologies

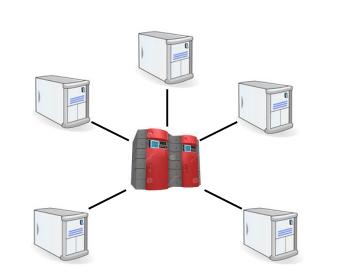
Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang

# Georgia College of Tech Computing

# **Problem Setup**

- $\triangleright$  k-Clustering: Given a set P of N points in  $\mathbb{R}^d$ , find centers  $\mathbf{x} = \{x_1, \dots, x_k\}$  to minimize  $\sum_{p \in P} \cot(p, \mathbf{x})$ . Widely studied cost functions in ML & TCS
  - k-median:  $cost(p, \mathbf{x}) = \min_{x \in \mathbf{x}} d(p, x)$
  - k-means:  $cost(p, \mathbf{x}) = \min_{x \in \mathbf{x}} d^2(p, x)$
- > Modern Challenge: data distributed over different sites, e.g. distributed databases, images and videos over networks, ...





general communication network

star network

### > Distributed Clustering:

- Communication graph: undirected graph G on n nodes with medges, where an edge indicates that the two nodes can communicate
- Global data: P is divided into local data sets  $P_1, \ldots, P_n$
- Goal: efficient distributed algorithm with low communication

#### **Our Results**

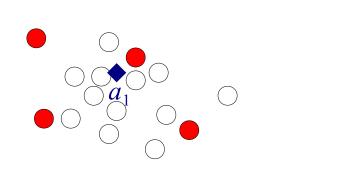
- > Efficient algorithm that
  - outputs  $(1 + \epsilon)\alpha$ -approx, given any non-distributed  $\alpha$ -approx algo
  - has low communication independent of #points in global data set - communication on a star network: O(kd + nk) points
  - has good experimental performance
- > Two stages of our distributed algorithm
- 1. Each node constructs a local portion of a global summary
- 2. Communicate the local portions, and compute approximation solution on the summary

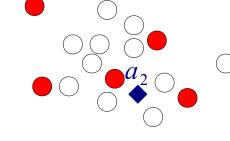
#### Coreset

> Coreset [Har-Peled-Mazumdar, STOC04]: short summaries capturing relevant info w.r.t. all clusterings

**Definition.** An  $\epsilon$ -coreset for P is a set of points D and weights w on D s.t.  $\forall \mathbf{x}, (1 - \epsilon) \operatorname{cost}(P, \mathbf{x}) \leq \sum_{q \in D} w_q \operatorname{cost}(q, \mathbf{x}) \leq (1 + \epsilon) \operatorname{cost}(P, \mathbf{x}).$ 

- > Non-distributed coreset construction [Feldman-Language, STOC11]
- 1. Compute a constant approximation solution A
- 2. Sample points S with probability proportional to cost(p, A); |S| = O(kd) for constant  $\epsilon$

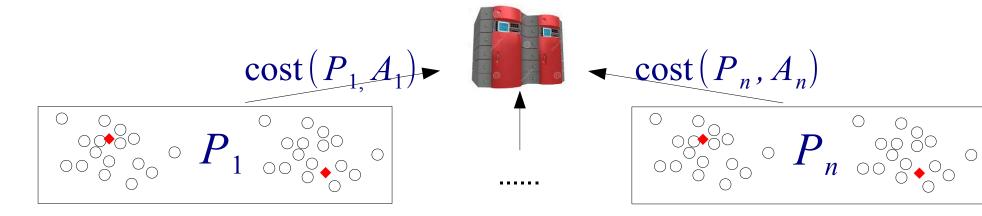




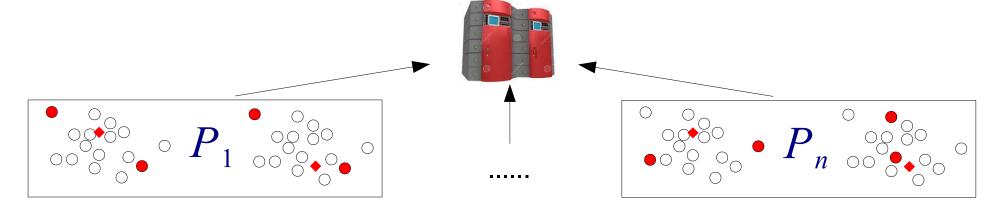
#### **Distributed Coreset Construction**

Algorithm (two rounds, interactive)

1. Compute a constant approximation solution  $A_i$  for  $P_i$ ; Communicate the costs  $cost(P_i, A_i)$ 

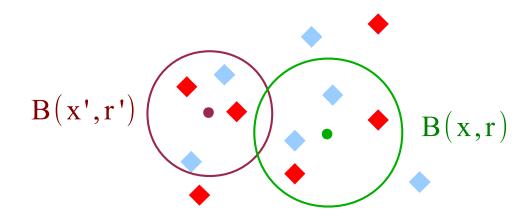


2. Sample points from  $P_i$  according to the multinomial distribution given by  $cost(P_i, A_i)$ ; #sampled points=O(kd) for constant  $\epsilon$ 



# Analysis

 $\triangleright$  Uniform sampling for metric balls:  $\forall B(x,r) = \{p : d(p,x) \leq r\},\$  $\frac{|B(x,r)\cap S|}{|S|} = \frac{|B(x,r)\cap P|}{|P|} \pm \epsilon \text{ when } |S| = \tilde{O}(\log[\# \text{distinct } B(x,r)\cap P]/\epsilon^2)$ 



> Sampling for general function space: [Feldman-Langberg, STOC11] Let  $B(f,r) = \{p : f(p) \le r\}$  for  $f : P \mapsto \mathbf{R}_{>0}, f \in F$ .

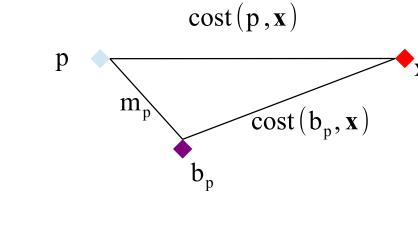
**Lemma.** Sample S from P with prob. prop. to  $m_p$ , and let  $w_p = \frac{\sum_q m_q}{m_p|S|}$ . If  $|S| = \tilde{O}(\dim(F, P)/\epsilon^2)$ , then w.h.p.

$$\forall f \in F, \left| \sum_{p \in P} f(p) - \sum_{q \in S} w_q f(q) \right| \le \epsilon \left( \sum_{p \in P} m_p \right) \left( \max_{p \in P} \frac{f(p)}{m_p} \right).$$

Proof idea: replace p with  $m_p$  copies p'; let  $f(p') = f(p)/m_p$ 

#### $\triangleright$ Intuition for distributed k-median:

- Let  $a_p$  be an anchor point for  $p \in P_i$ , and use sampling to approximate  $f_{\mathbf{x}}(p) = \cot(p, \mathbf{x}) - \cot(a_p, \mathbf{x})$ .
  - Set  $m_p = \text{cost}(p, a_p) \ge |f_{\mathbf{x}}(p)|$ .
  - Error  $\leq \epsilon \sum_{p \in P} \operatorname{cost}(p, a_p)$ .



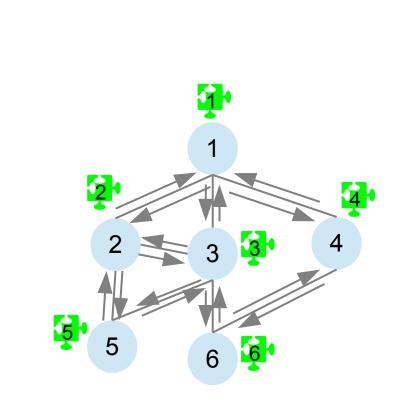
- Keypoints for low communication:
- $\triangleright$  sufficient to choose  $a_p$  to be the nearest center in the local approximation solution  $A_i$  so that error  $\leq O(\epsilon)$ OPT;
- ► sufficient to do the sampling locally.
- $\triangleright$  Intuition for distributed k-means: similar as k-median except
  - Upper bounds not available for  $f_{\mathbf{x}}(p) = \cot(p, \mathbf{x}) \cot(a_p, \mathbf{x})$
  - Bound separately the errors of bad points  $P \setminus G(\mathbf{x})$  and good points  $G(\mathbf{x}) = \{ p \in P : |\cot(p, \mathbf{x}) - \cot(a_p, \mathbf{x})| \le \cot(p, a_p)/\epsilon \}$

# **Distributed Clustering**

- > Algorithm
  - Distributed coreset construction
  - 2. Communicate the local portions of the coreset
  - 3. Compute approximation solution on the coreset

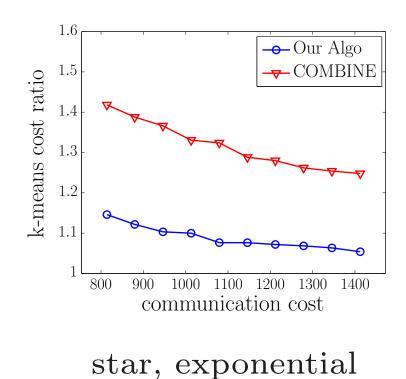
**Theorem.** Given any non-distributed  $\alpha$ -approx algo as a subroutine, our algo computes a  $(1 + \epsilon)\alpha$ -approx solution. The total communication cost is O(m(kd+nk)) points for constant  $\epsilon$ .

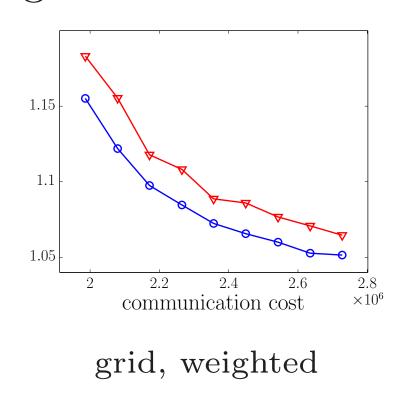
- Total Communication on Different Networks (for constant  $\epsilon$ ):
  - 1. Star graph:  $\tilde{O}(kd+nk)$  points by sending the local portions of the coreset to the coordinator
- 2. Rooted Tree:  $\tilde{O}(h(kd+nk))$  points by sending the local portions of the coreset to the root
- 3. General Topologies: O(m(kd+nk)) points Message Passing: on each node do
  - Communicate its local message to all its neighbors
  - When the node receives new message, communicate to all its neighbors

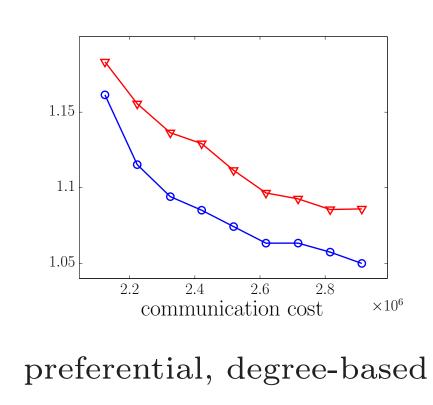


#### **Experiments**

- $\triangleright$  Data set: ColorHistogram ( $\approx 68$ k points in  $\mathbb{R}^{32}, k = 10, n = 25$ ); YearPredictionMSD ( $\approx 0.5$ m points in  $\mathbb{R}^{90}$ , k = 50, n = 100)
- > Results on ColorHistogram:







> Results on YearPredictionMSD:

