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MOTIVATION MODEL FORMULATION BY COUNTING PROCESS

» Viral Marketing: Can we predict how many people will follow several

of Technology-

EXPERIMENTAL EVALUATION : COMPETITORS

. N( t) = A(t) + M(t) where . » Continuous-time Independent Cascade model with exponential pairwise
weeks later 7 N(t) : counting process Ni(t) transmission function (CIC).
" g /\(t) . cumulative intensity function » Discrete-time Independent Cascade model (DIC).

» M(t) : zero-mean martingale 6 » Kernel Ridge Regression

» Assume each source set S;induces N,;(t)
a counting process Nij(t) EXPERIMENTAL EVALUATION : SYNTHETIC DATA

1 - Ni(t) = 1(S;, ) + M) : P
- 1 week 2we.eks n weeks | HS 1) fo (S, 7)dr — t Robustness to model mis-specifications
» Warehouse Distribution : Can we estimate how many users will be . a(S;, 1) : intensity function 0 20 30 40 50 60

served in the future ?
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» Kernel Smoothing : convolve the non-smooth intensity a(S, t) with <§E 5.0- V- <§E ‘
ot K(t) = k(t/o)/o where o is the bandwidth to get a smoothed intensity /" ' 10
25{
5, = K0 a5, 1/c) = 2 By KT~ S, 7)) .
| .__ where t(S, T) is the time when function ¢(X3r(t|7-)) jumps from 0 to 1. N5 = T

» Users llnfluence (or w.a.r.ehouses utllltlgs) are u.nkr?own. _Random Approximation . Q(+)/C < Q(r) < C(r), {r} ii.d. Q'(r) #cascades #cascades
» These influence (or utilities) grow continuously in time. (a) Weibull Family (CIC) (b) Exponential (CIC)
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Temporal dynamics governlng such growth are latent and unkpown e Z wiK(t—1(S,7)) - w>0,% < ||w|, < ZC
» Only temporal event information, e.g., when a user shares a video, when C Vethods N B

an order arrives at a warehouse, etc. might be available. | - N o E:E ] L Elg 1 T ‘

Can We Iearn the users’ influence (OI’ Warehousesi utilities) as a > Lemma If W O( /( 0-) ) Wlth prObablllty > 1 - 5 Ha E A SUCh that Lu == TCoveragelLearner P ? . N 3' == TCoveragelLearner R R
function of time from these limited observations ? LB [(a(S. 1) — &S 1)?] = Es-ps) fy [(@(S. 1) — &S, 1)2] dt/ T = <6

0(62 + o) >
TIME-VARYING COVERAGE FUNCTION 3
LEARNING ALGORITHM : TCOVERAGELEARNER

» A time-varying coverage function is a temporal combinatorial function | . | 01 - | | | | _ | | | |

over a finite set V of items, defined as - Given m i.i.d. counting processes, D™ := {(S1, Ni(f)), - .., (Sm, Nm(t))} up to S L

y observation time T, the log-likelihood is
f(S,0) =2 IP’( SESMS(Z‘)) . forall§ € 2%, where (c) DIC (d) Linear-Threshold

/(D" a) =

T
{/ {log a(S;, 1)} dNi(t) — / a(S,-,t)dt}.
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. EXPERIMENTAL EVALUATION : REAL DATA
» The ground set &/ with

» o-algebra .«
» Probability measure P

» Plugging the parametrlzatlon ak(sS, t) to solve

/
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-Us(f) € U : the set covered | ! T 20 e
Dy item s € 1 at time : ! where we define t; as the j-th event occurs in the i-th process. Lo s
- Us() CUs(T) forall t < 7 | | T 210{ § P =
ands eV : : g = /o K(t — t(S,', Tk)) at and k/(t,'j) = K(t,'j — t(S/, T/)). 5 I I i I 4
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- With Gaussian RBF kernel g; = 1 {erfc ( “5"’”)> erfc (Tt(S”Tk
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(a) MAE on real data
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» Sample {7} g Q'(T) from training data
= number of counting processes induced by s € V.

REPRESENTATION

(b) Effect of random features

»Yu € U, |V|-dimensional vector Tu ! ro(t|7) - Js = collection of all the jumping time before T 250
5 = time being coveyl;e‘d by s. 1 15 0L ) [ 1 - in probability | 75| /|V|Ns, uniformly sample 78 from Js; else, 75 = oc. - go{ “oc
. . . I = KernelRidgeRegression .
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2.4 | ' 1 Then with probability > 1 — § over the random sample of {r;}’,, we have o0 401 = .7
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function based on . V|10 ; 0 (c) Runtime (d) Influence maximization
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