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MOTIVATION

I Viral Marketing: Can we predict how many people will follow several
weeks later ?

��� 

How many people will be influenced in the future ? 
1 week 2 weeks n weeks 

I Warehouse Distribution : Can we estimate how many users will be
served in the future ?

。  。  。!

1 year 2 years n years 

CHALLENGES

I Users’ influence (or warehouses’ utilities) are unknown.
I These influence (or utilities) grow continuously in time.
I Temporal dynamics governing such growth are latent and unknown.
I Only temporal event information, e.g., when a user shares a video, when

an order arrives at a warehouse, etc. might be available.
Can we learn the users’ influence (or warehouses’ utilities) as a
function of time from these limited observations ?

TIME-VARYING COVERAGE FUNCTION

I A time-varying coverage function is a temporal combinatorial function
over a finite set V of items, defined as

f (S, t) = Z · P
(⋃

s∈S
Us(t)

)
, for all S ∈ 2V, where

I The ground set U with
I σ-algebra A

I Probability measure P
I Normalization constant Z

IUs(t) ⊆ U : the set covered
by item s ∈ V at time t

IUs(t) ⊆ Us(τ ) for all t 6 τ
and s ∈ V
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REPRESENTATION

I ∀u ∈ U , |V|-dimensional vector
τ s

u = time being covered by s.
I ru(t) : R+ 7→ {0,1}|V| indicates

whether u is covered at time t by
each s ∈ V.

I Lemma we can represent
f (S, t) = Z · Eτ∼Q(τ )

[
φ(χ>S r(t |τ ))

]
where φ(x) := min {x ,1}, and
r(t |τ ) is a multidimensional step
function based on τ .
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MODEL FORMULATION BY COUNTING PROCESS

I N(t) = Λ(t) + M(t) where
I N(t) : counting process
I Λ(t) : cumulative intensity function
I M(t) : zero-mean martingale

I Assume each source set Si induces
a counting process Ni(t)
I Ni(t) = f (Si, t) + Mi(t)
I f (Si, t) =

∫ t
0 a(Si, τ )dτ

I a(Si, t) : intensity function 10 20 30 40 50 60 
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PARAMETRIZATION

I Kernel Smoothing : convolve the non-smooth intensity a(S, t) with
K (t) = k(t/σ)/σ where σ is the bandwidth to get a smoothed intensity

aK (S, t) = K (t) ? (df (S, t)/dt) = Z · Eτ∼Q(τ ) [K (t − t(S, τ ))] .

where t(S, τ ) is the time when function φ(χ>S r(t |τ )) jumps from 0 to 1.
I Random Approximation : Q′(τ )/C ≤ Q(τ ) ≤ CQ′(τ ), {τi} i.i.d.∼ Q′(τ )

A =

aK
w(S, t) =

W∑
i=1

wi K (t − t(S, τi)) : w > 0,
Z
C

6 ‖w‖1 6 ZC

 .

I Lemma If W = Õ(Z 2/(εσ)2), with probability ≥ 1− δ, ∃ã ∈ A such that
ESEt

[
(a(S, t)− ã(S, t))2

]
= ES∼P(S)

∫ T
0

[
(a(S, t)− ã(S, t))2

]
dt/T =

O(ε2 + σ4)

LEARNING ALGORITHM : TCOVERAGELEARNER

I Given m i.i.d. counting processes, Dm := {(S1,N1(t)), . . . , (Sm,Nm(t))} up to
observation time T , the log-likelihood is

`(Dm|a) =
m∑

i=1

{∫ T

0
{log a(Si, t)}dNi(t)−

∫ T

0
a(Si, t) dt

}
.

I Plugging the parametrization aK
w(S, t) to solve

min
w

m∑
i=1

w>g i −
∑
tij<T

log
(
w>k (tij)

) subject to w > 0, ‖w‖1 6 1,

where we define tij as the j-th event occurs in the i-th process.

g ik =

∫ T

0
K (t − t(Si, τk)) dt and k l(tij) = K (tij − t(Si, τl)).

I With Gaussian RBF kernel g ik = 1
2

{
erfc

(
−t(Si ,τk)√

2σ

)
− erfc

(
T−t(Si ,τk)√

2σ

)}
.

I Sample {τi} i.i.d.∼ Q′(τ ) from training data
I Ns = number of counting processes induced by s ∈ V.
IJs = collection of all the jumping time before T
I in probability |Js|/|V|Ns, uniformly sample τ s

i from Js; else, τ s
i =∞.

SAMPLE COMPLEXITY

Suppose W = Õ
(

Z 2
[(ZT

ε

)5/2
+
(

ZT
εamin

)5/4
])

and m = Õ
(ZT
ε [W + ε`]

)
.

Then with probability ≥ 1− δ over the random sample of {τi}W
i=1, we have

that for any 0 ≤ t ≤ T ,

ES
[
f̂ (S, t)− f (S, t)

]2
≤ ε.

EXPERIMENTAL EVALUATION : COMPETITORS

I Continuous-time Independent Cascade model with exponential pairwise
transmission function (CIC).

I Discrete-time Independent Cascade model (DIC).
I Kernel Ridge Regression

EXPERIMENTAL EVALUATION : SYNTHETIC DATA

Robustness to model mis-specifications

0.0

2.5

5.0

7.5

10.0

2.5 5.0 7.5 10.0
#cascades

M
A

E

Methods
DIC
CIC
KernelRidgeRegression
TCoverageLearner

0

10

20

2.5 5.0 7.5 10.0
#cascades

M
A

E

Methods
DIC
CIC
KernelRidgeRegression
TCoverageLearner

(a) Weibull Family (CIC) (b) Exponential (CIC)
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(c) DIC (d) Linear-Threshold

EXPERIMENTAL EVALUATION : REAL DATA
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(c) Runtime (d) Influence maximization
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