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MOTIVATION

I Problem : Given a set of influential earlier users, can we predict how
many people will follow them in the future?

。。。 

How many people will be influenced in the future ? 

I Challenges
I Latent social network structures
I Unknown diffusion mechanism
I Observing only temporal traces of information diffusion

PREVIOUS TWO-STAGE SOLUTIONS

I Algorithm
I Learn one of the following diffusion models

I Discrete-Time independent cascade Model (DIC)
I Linear Threshold Model (LT)
I Continuous-Time independent cascade Model (CIC)

I Calculate the influence from the chosen model
I Weakness

I The diffusion model may be misspecified.
I Need to learn both hidden networks and model parameters.
I Influence calculation is challenging.

Can we avoid diffusion model learning & influence computation?

INFLUENCE FUNCTION

I Definition : σ(S) : 2V 7→ R+ of a set of nodes S ⊆ V , |V| = d
I σ(S) is the expected number of infected nodes by set S.
I σ(S) is common to many diffusion models.

I Property : σ(S) is a coverage function for DIC, LT and CIC model

I σ(S) =∑u∈⋃s∈S As
au

I a ground set U with weight
au > 0, u ∈ U

I a collection of subsets
{As : As ⊆ U} associated
with each s ∈ V u
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RANDOM REACHABILITY FUNCTION

I View the diffusion process as a node reachability problem in a random
graph G sampled from a joint distribution induced by a diffusion model.

I Represent each sample G as a binary reachability matrix with

Rsj =

{
1, j is reachable from source s,
0, otherwise.

I Denote each set S as a binary vector χS ∈ {0,1}d, χS(s) = 1, s ∈ S
I Determine the reachability of node j from S by whether χ>SR :j ≥ 1
I Transform χ>SR :j into a binary function φ

(
χ>S R :j

)
: 2V 7→ {0,1}, where

φ(u) = min {u,1} : Z+ 7→ {0,1} is a concave function
I Derive the influence of S in G as

#(S|R) :=
∑d

j=1
φ
(
χ>S R :j

)
.

EXPECTATION OF RANDOM RECHABILITY FUNCTIONS

I Overall influence function

ER∼pR [#(S|R)] =
∑d

j=1
ER∼pR

[
φ
(
χ>S R :j

)]
=
∑d

j=1
Pr
{
φ
(
χ>S R :j

)
= 1|χS

}︸ ︷︷ ︸
:=fj(χS)

I Simple Learning Strategy
Learn each fj(χS) separately in parallel and sum them together.

RANDOM BASIS FUNCTION APPROXIMATION

I Denote fj(χS) = Er∼pj(r )
[
φ(χ>S r )

]
where r := R :j, and pj(r ) is the marginal

distribution of column j of R induced by pR.
I Let C be the minimum value such that pj(r ) ≤ Cqj(r ).
I Draw K random binary vectors {r1, r2, . . . , rK} from q(r ) such that

f w(χS) =
∑K

k=1
wk φ(χ

>
S rk) = w>φ(χS) subject to

∑
k

wk = 1,wk > 0

Lemma
Let pχ(χS) be a distribution of χS. If K = O(C2

ε2
log C

εδ) and r1, . . . , rK are
drawn i.i.d. from qj(r ), then with probability at least 1− δ, there exists an
f w ∈ F̂w such that EχS∼pχ[(fj(χS)− f w(χS))2] ≤ ε2.

I Propose qj(r ) =
∏d

s=1 qj(r (s)) where qj(r (s)) is the marginal distribution
of the i-th dimension of r estimated by qj(r (s)) = 1

|Dm
s |
∑

i∈Dm
s

yij,
Dm

s := {i : s ∈ Si}.
EFFICIENT LEARNING ALGORITHM

I Truncate f w to avoid zero probability f w ,λ(χS) = (1− 2λ)f w(χS) + λ, λ is a
small threshold value.

I Draw m i.i.d. cascades Dm := {(S1, I1), . . . , (Sm, Im)} with source set Si
and the respective set of influenced nodes Ii.

I Let yji = I {j ∈ Ii} denote whether node j is infected in cascade Ii

I Learn the parameters w by maximizing the log-likelihood for each node j

ŵ =
∑m

i=1
yij log f w ,λ(χSi) + (1− yij) log(1− f w ,λ(χSi))

subject to
∑K

k=1
wk = 1,wk ≥ 0. (1)

by using convex optimization techniques.

OVERALL ALGORITHM INFLULEARNER

Algorithm 1 INFLULEARNER

input training data {(Si, Ii)}m
i=1, λ ∈ (0, 1

4)
1: for each node j ∈ [d ] do
2: sample K random features {r1, . . . , rK} from qj(r );
3: compute φ(χSi) = (φ(χ>Si

r1), . . . , φ(χ
>
Si

rK )), ∀i ;
4: Solve (1) using convex optimization;
5: f̂ w ,λ

j (χS) = λ + (1− 2λ)(wT )>φ(χS);
6: end for

output σ̂(S) =∑d
j=1 f̂ w ,λ

j (χS);

SAMPLE COMPLEXITY

Suppose we set λ = Õ( εd), K = Õ(C2d2

ε2
), and m = Õ

(
C2d3

ε3

)
. Then with

probability at least 1− δ over the drawing of the random features, the

output of Algorithm 1 satisfies EDmEpχ

[(∑d
j=1 f̂ w ,λ

j (χS)− σ(S)
)2
]
≤ ε.

Intuitively, when the gap C between pj and qj is large, we need more
random features and more training data to learn the weights.

EXPERIMENTAL EVALUATION : COMPETITORS

I Continuous-time Independent Cascade model with exponential
pairwise transmission function (CIC).

I Continuous-time Independent Cascade model with exponential
pairwise transmission function and given network Structure (CIC-S).

I Discrete-time Independent Cascade model (DIC).
I Discrete-time Independent Cascade model with given network

Structure (DIC-S).
I Modified Logistic Regression
I Linear Regression

EXPERIMENTAL EVALUATION : SYNTHETIC DATA

Robustness to model mis-specifications
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(a) Weibull Family (CIC) (b) Exponential (CIC)
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EXPERIMENTAL EVALUATION : REAL DATA
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(a) MAE on real data (b) Effect of random features
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(c) Runtime (d) Influence maximization
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